• 30 dagen retourgarantie
  • Gratis verzending vanaf €40,- of 4 boeken
  • Alle boeken met zorg gecontroleerd

Chapman & Hall/CRC Data Science Series- Statistical Foundations of Data Science

Auteur Runze Li
Maak tweedehands je eerste keus
  • 30 dagen retourgarantie 
  • Gratis verzending vanaf 4 boeken of 40 euro
  • Op werkdagen voor 15:00 besteld, dezelfde dag verzonden
  • De Stapelweken zijn begonnen! (van 11 t/m 24 augustus)
Alleen nog tweedehands verkrijgbaar
Stapelweken

42,75

Hoe tweedehands wil je het hebben?
Chapman & Hall/CRC Data Science Series- Statistical Foundations of Data Science
Chapman & Hall/CRC Data Science Series- Statistical Foundations of Data Science
Beetje gebruikt
42,75
563900466
component.product.quantitySelect.legend
ISBN
9781466510845
Bindwijze
Hardcover
Taal
Engels
Auteur
Uitgeverij
CRC Press Inc
Jaar van uitgifte
2020
Aantal pagina's
752

Waar gaat het over?

Gives a comprehensive and systematic account of high-dimensional data analysis, including variable selection via regularization methods and sure independent feature screening methods. It is a valuable reference for researchers involved with model selection, variable selection, machine learning, and risk management. Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Lees verder

Recensies

Gemiddelde waardering van 0 van 5 sterren

0 recensies
Tatiana de Rosnay, Tatiana Rosnay (de)
A l'encre russe
Stapelweken
15,85
Malik
Curare
Stapelweken
9,10
Tony Hillerman
Finding Moon
Stapelweken
16,24
Cyril H. Rogers, Frances Tidball
Grasparkieten en hun verzorging
Stapelweken
11,80
50% korting
Stapelweken
4,75 2,37
Paul de Ruijter, Saskia Stolk
Klaar om te wenden
Stapelweken
21,50
Tatiana de Rosnay, Tatiana Rosnay (de)
A l'encre russe
Stapelweken
15,85
Malik
Curare
Stapelweken
9,10
Tony Hillerman
Finding Moon
Stapelweken
16,24
Cyril H. Rogers, Frances Tidball
Grasparkieten en hun verzorging
Stapelweken
11,80
50% korting
Stapelweken
4,75 2,37
Paul de Ruijter, Saskia Stolk
Klaar om te wenden
Stapelweken
21,50